You are viewing documentation for Kubernetes version: v1.20

Kubernetes v1.20 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date documentation, see the latest version.

Metrics For Kubernetes System Components

System component metrics can give a better look into what is happening inside them. Metrics are particularly useful for building dashboards and alerts.

Kubernetes components emit metrics in Prometheus format. This format is structured plain text, designed so that people and machines can both read it.

Metrics in Kubernetes

In most cases metrics are available on /metrics endpoint of the HTTP server. For components that doesn't expose endpoint by default it can be enabled using --bind-address flag.

Examples of those components:

In a production environment you may want to configure Prometheus Server or some other metrics scraper to periodically gather these metrics and make them available in some kind of time series database.

Note that kubelet also exposes metrics in /metrics/cadvisor, /metrics/resource and /metrics/probes endpoints. Those metrics do not have same lifecycle.

If your cluster uses RBAC, reading metrics requires authorization via a user, group or ServiceAccount with a ClusterRole that allows accessing /metrics. For example:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
  - nonResourceURLs:
      - "/metrics"
    verbs:
      - get

Metric lifecycle

Alpha metric → Stable metric → Deprecated metric → Hidden metric → Deleted metric

Alpha metrics have no stability guarantees. These metrics can be modified or deleted at any time.

Stable metrics are guaranteed to not change. This means:

  • A stable metric without a deprecated signature will not be deleted or renamed
  • A stable metric's type will not be modified

Deprecated metrics are slated for deletion, but are still available for use. These metrics include an annotation about the version in which they became deprecated.

For example:

  • Before deprecation

    # HELP some_counter this counts things
    # TYPE some_counter counter
    some_counter 0
    
  • After deprecation

    # HELP some_counter (Deprecated since 1.15.0) this counts things
    # TYPE some_counter counter
    some_counter 0
    

Hidden metrics are no longer published for scraping, but are still available for use. To use a hidden metric, please refer to the Show hidden metrics section.

Deleted metrics are no longer published and cannot be used.

Show hidden metrics

As described above, admins can enable hidden metrics through a command-line flag on a specific binary. This intends to be used as an escape hatch for admins if they missed the migration of the metrics deprecated in the last release.

The flag show-hidden-metrics-for-version takes a version for which you want to show metrics deprecated in that release. The version is expressed as x.y, where x is the major version, y is the minor version. The patch version is not needed even though a metrics can be deprecated in a patch release, the reason for that is the metrics deprecation policy runs against the minor release.

The flag can only take the previous minor version as it's value. All metrics hidden in previous will be emitted if admins set the previous version to show-hidden-metrics-for-version. The too old version is not allowed because this violates the metrics deprecated policy.

Take metric A as an example, here assumed that A is deprecated in 1.n. According to metrics deprecated policy, we can reach the following conclusion:

  • In release 1.n, the metric is deprecated, and it can be emitted by default.
  • In release 1.n+1, the metric is hidden by default and it can be emitted by command line show-hidden-metrics-for-version=1.n.
  • In release 1.n+2, the metric should be removed from the codebase. No escape hatch anymore.

If you're upgrading from release 1.12 to 1.13, but still depend on a metric A deprecated in 1.12, you should set hidden metrics via command line: --show-hidden-metrics=1.12 and remember to remove this metric dependency before upgrading to 1.14

Disable accelerator metrics

The kubelet collects accelerator metrics through cAdvisor. To collect these metrics, for accelerators like NVIDIA GPUs, kubelet held an open handle on the driver. This meant that in order to perform infrastructure changes (for example, updating the driver), a cluster administrator needed to stop the kubelet agent.

The responsibility for collecting accelerator metrics now belongs to the vendor rather than the kubelet. Vendors must provide a container that collects metrics and exposes them to the metrics service (for example, Prometheus).

The DisableAcceleratorUsageMetrics feature gate disables metrics collected by the kubelet, with a timeline for enabling this feature by default.

Component metrics

kube-controller-manager metrics

Controller manager metrics provide important insight into the performance and health of the controller manager. These metrics include common Go language runtime metrics such as go_routine count and controller specific metrics such as etcd request latencies or Cloudprovider (AWS, GCE, OpenStack) API latencies that can be used to gauge the health of a cluster.

Starting from Kubernetes 1.7, detailed Cloudprovider metrics are available for storage operations for GCE, AWS, Vsphere and OpenStack. These metrics can be used to monitor health of persistent volume operations.

For example, for GCE these metrics are called:

cloudprovider_gce_api_request_duration_seconds { request = "instance_list"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_insert"}
cloudprovider_gce_api_request_duration_seconds { request = "disk_delete"}
cloudprovider_gce_api_request_duration_seconds { request = "attach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "detach_disk"}
cloudprovider_gce_api_request_duration_seconds { request = "list_disk"}

kube-scheduler metrics

FEATURE STATE: Kubernetes v1.20 [alpha]

The scheduler exposes optional metrics that reports the requested resources and the desired limits of all running pods. These metrics can be used to build capacity planning dashboards, assess current or historical scheduling limits, quickly identify workloads that cannot schedule due to lack of resources, and compare actual usage to the pod's request.

The kube-scheduler identifies the resource requests and limits configured for each Pod; when either a request or limit is non-zero, the kube-scheduler reports a metrics timeseries. The time series is labelled by:

  • namespace
  • pod name
  • the node where the pod is scheduled or an empty string if not yet scheduled
  • priority
  • the assigned scheduler for that pod
  • the name of the resource (for example, cpu)
  • the unit of the resource if known (for example, cores)

Once a pod reaches completion (has a restartPolicy of Never or OnFailure and is in the Succeeded or Failed pod phase, or has been deleted and all containers have a terminated state) the series is no longer reported since the scheduler is now free to schedule other pods to run. The two metrics are called kube_pod_resource_request and kube_pod_resource_limit.

The metrics are exposed at the HTTP endpoint /metrics/resources and require the same authorization as the /metrics endpoint on the scheduler. You must use the --show-hidden-metrics-for-version=1.20 flag to expose these alpha stability metrics.

What's next

Last modified December 23, 2020 at 1:58 PM PST: Remove link to empty list for k8s metrics (03a336a94)